This page (revision-9) was last changed on 21-May-2009 22:06 by Dieter Käppel

This page was created on 21-May-2009 16:36 by Dieter Käppel

Only authorized users are allowed to rename pages.

Only authorized users are allowed to delete pages.

Page revision history

Version Date Modified Size Author Changes ... Change note
9 21-May-2009 22:06 4 KB Dieter Käppel to previous
8 21-May-2009 22:06 4 KB Dieter Käppel to previous | to last
7 21-May-2009 21:51 4 KB Dieter Käppel to previous | to last
6 21-May-2009 16:58 3 KB Dieter Käppel to previous | to last
5 21-May-2009 16:49 3 KB Dieter Käppel to previous | to last
4 21-May-2009 16:48 3 KB Dieter Käppel to previous | to last
3 21-May-2009 16:47 2 KB Dieter Käppel to previous | to last
2 21-May-2009 16:39 1 KB Dieter Käppel to previous | to last
1 21-May-2009 16:36 637 bytes Dieter Käppel to last

Page References

Incoming links Outgoing links

Version management

Difference between version and

At line 33 changed one line
Die hier gezeigte Implementierung der hypergeometrischen Verteilungsfunktion haben wir nicht besonders optimiert, da wir diese durch die Gauß-Verteilung approximieren:
Die hier gezeigte Implementierung der hypergeometrischen Verteilungsfunktion haben wir nicht besonders optimiert, dafür ist der Algorithmus mathematisch sehr leicht durchschaubar. In der Praxis nutzen wir diese Implementierung sowieso nicht, da die Approximierung durch die Gauß-Verteilung in konstanter Komplexität berechnet werden kann und nicht den Integer-Einschränkungen im Wertebereich unterliegt:
At line 53 added 14 lines
Ein Vergleich der hypergeometrischen Werte mit der Gauß-Approximation bringt folgendes Ergebnis:
{{{
p(14, 6, 7, 0) = 0.002331002331002331 ~ 0.004642135984499961
p(14, 6, 7, 1) = 0.05128205128205128 ~ 0.059229045502362444
p(14, 6, 7, 2) = 0.29603729603729606 ~ 0.30139821320402993
p(14, 6, 7, 3) = 0.703962703962704 ~ 0.6986017867959701
p(14, 6, 7, 4) = 0.9487179487179488 ~ 0.9407709544976376
p(14, 6, 7, 5) = 0.9976689976689977 ~ 0.9953578640155001
p(14, 6, 7, 6) = 1.0 ~ 0.999864197750926
}}}
Das Ergebnis ist für die Praxis zunächst völlig ausreichend. Die eigentliche Herausforderung liegt nicht in der Präzision der Berechnung, sondern in der strukturellen Vorgehensweise bei der Aufstellung des semantischen Gebildes.